Detecting Collisions

In the previous programs you have learned how to do various things with graphics and user input. You have learned how to animate images on the screen, but there remains one major concept that you need to know in animation. Since the computer just draws pixels on the screen to make the images, it doesn’t know or care where they are in relation to each other, but as a programmer, you need to be able to tell if two or more objects collide. This may seem like a simple concept but you will see that it is more complicated than you think. In order to detect a collision you need to check if any part of one object is in the same position as any part of another object. In order to find this, an if-statement will work, but it will be very complicated and long. In the following code we will check to see if two pixels are colliding, the simplest of cases.

If(pixel1x == pixel2x && pixel1y == pixel2y)

// do something

here we have used two pixels (pixel1 and pixel2) and we have simply checked to see if they are both in the same position. Notice that we first test the x position and only if they are the same we test the y coordinates. Only if the y coordinates are the same AND (indicated by the && operator) the x coordinates are the same is the if-statement true.

This is fine for pixels, but how many images are pixels? Not many. The next simplest image to check for collisions is the rectangular images.

If(pixel1x >= rectangle1x && pixel1x <= rectangle1x + rectangle1width && pixel1y >= rectangle1y && pixel1y <= rectangle1y + rectangle1height)

// do something

This block of code tests to see if a pixel collides in a rectangle. Now that we have a range to work in we must not only switch to > and < instead of ==, but we must also have more parts to the if-statement. This is getting complicated now, but there is another situation we need to know about. If two rectangles collide the statement gets even longer:

If(rectangle1x >= rectangle2x – rectangle1width && rectangle1x <= rectangle2x + rectangle2width && rectangle1y >= rectangle2y - rectangle1height && rectangle1y <= rectangle2y + rectangle2height)

Confused yet? Just be glad we are only working within two dimensions. This gets even longer in 3D, but we won’t go into that here. In fact, this is as complicated as we are going to get for the purposes of this lesson, but it is possible to test collisions on lines, circles, ellipses, and any other regular shape using equations. Notice, however, that we subtracted the width of rectangle1 from rectangle2x. This works because as the right-edge of the rectangle collides with the left edge of the other rectangle, the x-coordinate of rectangle1 is at the x-position of rectangle2 minus the width of rectangle1. Again, this may seem complicated, so here is an example of collision detection in action:

#include <graphics.h>

#include <conio.h>

#include <dos.h>

int main(void)

{

int gdriver = DETECT, gmode, errorcode;

int r1x=0, r1y=0, r1height=10, r1width=20, r2x=300, r2y=300, r2height=20, r2width=10;

initgraph(&gdriver, &gmode, "C:/tc/bgi");

while(1)

{

setfillstyle(SOLID_FILL,BLACK);

bar(r1x,r1y,r1x+r1width,r1y+r1height);

setfillstyle(SOLID_FILL,BLACK);

bar(r2x,r2y,r2x+r2width,r2y+r2height);

r1x++;

r1y++;

r2x--;

r2y--;

setfillstyle(SOLID_FILL,RED);

bar(r1x,r1y,r1x+r1width,r1y+r1height);

setfillstyle(SOLID_FILL,WHITE);

bar(r2x,r2y,r2x+r2width,r2y+r2height);

delay(50);

if(r1x >= r2x-r1width && r1x <= r2x+r2width && r1y >= r2y-r1height && r1y < r2y+r2height)

{

setfillstyle(SOLID_FILL,RED);

bar(0,0,getmaxx(),getmaxy());

break;

}

}

getch();

closegraph();

}

Now that you are all experts, create 2 rectangles and a pixel and animate them in such a way that they will collide at different times. Have the computer screen flash red for 1 seconds after every collision. Fix it so that as the images move over each other, there is only one collision detected.

#include <graphics.h>

#include <conio.h>

#include <dos.h>

int main(void)

{

int gdriver = DETECT, gmode, errorcode;

int r1x=0, r1y=0, r1height=10, r1width=20, r2x=300, r2y=320, r2height=20, r2width=10, p1x=170, p1y=330;

int r1r2=0, r1p1=0, r2p1=0;

initgraph(&gdriver, &gmode, "C:/tc/bgi");

while(1)

{

setfillstyle(SOLID_FILL,BLACK);

bar(r1x,r1y,r1x+r1width,r1y+r1height);

setfillstyle(SOLID_FILL,BLACK);

bar(r2x,r2y,r2x+r2width,r2y+r2height);

putpixel(p1x,p1y,BLACK);

r1x++;

r1y++;

r2x--;

r2y--;

p1y--;

setfillstyle(SOLID_FILL,RED);

bar(r1x,r1y,r1x+r1width,r1y+r1height);

setfillstyle(SOLID_FILL,BLUE);

bar(r2x,r2y,r2x+r2width,r2y+r2height);

putpixel(p1x,p1y,WHITE);

delay(50);

if(r1r2 && r1p1 && r2p1)

break;

if(r1x >= r2x-r1width && r1x <= r2x+r2width && r1y >= r2y-r1height && r1y < r2y+r2height && !r1r2)

{

setfillstyle(SOLID_FILL,RED);

bar(0,0,getmaxx(),getmaxy());

r1r2 = 1;

delay(500);

cleardevice();

}

if(p1x >= r1x && p1x <= r1x+r1width && p1y >= r1y && p1y <= r1y+r1height && !r1p1)

{

setfillstyle(SOLID_FILL,RED);

bar(0,0,getmaxx(),getmaxy());

r1p1 = 1;

delay(500);

cleardevice();

}

if(p1x >= r2x && p1x <= r2x+r2width && p1y >= r2y && p1y <= r2y+r2height && !r2p1)

{

setfillstyle(SOLID_FILL,RED);

bar(0,0,getmaxx(),getmaxy());

r2p1 = 1;

delay(500);

cleardevice();

}

}

getch();

closegraph();

}

